วันพุธที่ 2 ธันวาคม พ.ศ. 2552

การอ่านค่าความต้านทานแบบ แถบสี

ตัวความต้านทาน
ตัวความต้านทาน คือรีซีสเตอร์ (Resistor) หรือ “อาร์” (R) ซึ่งจะเป็นอุปกรณ์ที่ใช้กันมากในวงจรอิเล็กทรอนิกส์ อย่างเช่น วงจรขยายเสียง, วงจรวิทยุ, วงจรเครื่องรับโทรทัศน์ และอุปกรณ์เครื่องใช้ไฟฟ้าอื่น ๆ









3. แบบ 6 แถบสี


ความต้านทานแบบ 6 สี จะอ่านค่า 5 แถบสีแรกแบบความต้านทาน 5 แถบสี ส่วนสีที่ 6 คือค่า Temperrature Coefdicient (CT) หรือสัมประสิทธ์ทางอุณหภูมิ มีหน่วยเป็น ppm (part per million : ส่วนในล้านส่วน) เป็นค่าแสดงลักษณะการเปลี่ยนแปลงค่าความต้านทาน เมื่ออุณหภูมิเปลี่ยนไป


แหล่งที่มา
การอ่านค่าความต้านทานบอกแถบสี.[online].เข้าถึงได้จาก:http://www.elecnet.chandra.ac.th/learn/courses/ELTC1203/resistor/colorcoderesistor.htm
การอ่านค่าตัวต้านทานแบบแถบสี.[online].เข้าถึงได้จาก:http://www.basiclite.com/web/index.php?topic=62.0

วันพุธที่ 18 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้าพลังความร้อน(Steam Power Plant)




ลักษณะการทำงาน



เป็นโรงไฟฟ้าที่ใช้เครื่องกังหันไอน้ำเป็นเครื่องต้นกำลังหมุนเครื่องกำเนิดไฟฟ้าไอน้ำที่มีความดันและอุณหภูมิสูงนี้ได้จากการเปลี่ยนสถานะของน้ำในหม้อน้ำ เมื่อได้รับพลังความร้อนจากการเผาไหม้ของเชื้อเพลิงในเตาเผา ( Furnace) ไอน้ำจะถูกส่งไปขับดันกังหันไอน้ำ ซึ่งมีเพลาต่อกับเครื่องกำเนิดไฟฟ้า หลังจากนั้นก็จะผ่านไปกลั่นตัวเป็นน้ำที่เครื่องควบแน่น (Condenser) และถูกส่งกลับมารับความร้อนใหม่ในหม้อน้ำ เนื่องจากไม่สามารถเปลี่ยนสถานะของน้ำให้เป็นไอได้อย่างรวดเร็ว เมื่อเริ่มเดินเครื่องแต่ละครั้ง จนใช้งานได้ จะใช้เวลาอย่างน้อยประมาณ 2 – 3 ชั่วโมง ดังนั้น จึงเหมาะที่จะใช้เป็นโรงไฟฟ้าฐาน (Base Load Plant) ซึ่งทำหน้าที่ผลิตพลังงานไฟฟ้าตลอดเวลา เป็นระยะเวลานานก่อนการหยุดเครื่องแต่ละครั้ง โดยทั่วไปโรงไฟฟ้าพลังไอน้ำมีขนาดประมาณ 1 – 1,300 เมกะวัตต์ สามารถใช้เชื้อเพลิงได้หลายชนิด เช่น ถ่านหิน น้ำมันเตา ก๊าซธรรมชาติ ขยะ ฯลฯ และมีประสิทธิภาพประมาณ 30 – 35 % และมีอายุการใช้งานประมาณ 25 ปี






ส่วนประกอบที่สำคัญ



หม้อน้ำ (Boiler) เป็นอุปกรณ์ที่ทำหน้าที่เปลี่ยนพลังงานจากเชื้อเพลิงชนิดต่างๆให้เป้นพลังงานความร้อนในรูปของไอน้ำที่มีความดันและอุณหภูมิสูง หม้อน้ำมีลักษณะแตกต่างกันไปตามการใช้งาน เช่น Fire – Tube Boiler เป็นหม้อน้ำขนาดเล็ก ๆ ใช้ผลิตไอน้ำที่มีความดันและอุณหภูมิไม่สูงมาก Water – Tube Boiler เป็นหม้อน้ำขนาดใหญ่ใช้ผลิตไอน้ำที่มีความดันและอุณหภูมิสูงโดยทั่วไปมีอยู่ 2 แบบ คือ แบบ DRUM ซึ่งสามารถผลิตไอน้ำได้ที่ความดันสูงถึง 177 ความดันบรรยากาศ (179 Bar) และแบบOnce - Through ซึ่งสามารถผลิตไอน้ำได้ทั้งที่ความดันต่ำและสูงกว่าความดันวิกฤติของน้ำ (Critical Pressure ) คือ 218ความดันบรรยากาศ ( 220.5 Bar )




หม้อน้ำมีระบบที่สำคัญ คือระบบเชื้อเพลิง ระบบการเผาไหม้ Evaporator Drumหรือ Separater Superheater , Economizer, Air Heater, Fan และอุปกรณ์ประกอบ




กังหันไอน้ำ (Steam Turbine) มีขนาดต่างๆตั้งแต่ขนาดเล็ก (เล็กกว่า 1 เมกะวัตต์) แบบ Single – Cylinder , Non – Reheat Type จนถึงขนาดใหญ่ (ใหญ่กว่า 1,000 เมกะวัตต์) แบบ Multi - Cylinder Reheat Typeกังหันไอน้ำมีส่วนประกอบที่สำคัญ คือ Control Valve, Stop Valve, Stator Blade, Rotor Blade, Casing and Rotor พร้อมอุปกรณ์ประกอบที่จำเป็นอื่นๆ เช่น Feed – Water Heating Plant, Pump และความควบแน่น (Condenser) เป็นต้น





แหล่งอ้างอิง


โรงไฟฟ้าพลังไอน้ำ Steam Power Plant). [online].เข้าถึงไดจาก : http://prinfo.egat.co.th/steam_power_plant.html



โรงไฟฟ้าพลังน้ำ

โรงไฟฟ้าพลังงานน้ำ ตัวอย่าง โรงไฟฟ้าพลังน้ำลำตะคอง


ลักษณะการทำงาน

โรงไฟฟ้าพลังงานน้ำ เป็นแหล่งผลิตไฟฟ้าที่สำคัญอีกชนิดหนึ่งของประเทศไทย โรงไฟฟ้าชนิดนี้ใช้น้ำในลำน้ำธรรมชาติเป็นพลังงาน ในการเดินเครื่อง โดยวิธีสร้างเขื่อนปิดกั้นแม่น้ำไว้ เป็นอ่างเก็บน้ำ ให้มีระดับอยู่ในที่สูงจนมีปริมาณน้ำ และแรงดันเพียงพอที่จะนำมาหมุนเครื่องกังหันน้ำและเครื่องกำเนิดไฟฟ้าซึ่งอยู่ในโรงไฟฟ้าท้ายน้ำที่มีระดับต่ำกว่าได้ กำลังผลิตติดตั้งและพลังงานไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าชนิดนี้ จะเพิ่มเป็นสัดส่วนโดยตรงกับแรงดันและปริมาณน้ำที่ไหลผ่านเครื่องกังหันน้ำ
โรงไฟฟ้าพลังงานน้ำแบ่งตามลักษณะการบังคับน้ำเพื่อผลิตไฟฟ้าได้ 4 แบบ คือ

1. โรงไฟฟ้าแบบมีน้ำไหลผ่านตลอดปี (Run-of-river Hydro Plant) โรงไฟฟ้าแบบนี้ไม่มีอ่างเก็บน้ำ โรงไฟฟ้าจะผลิตไฟฟ้าโดยการใช้น้ำที่ไหลตามธรรมชาติของลำน้ำ หากน้ำมีปริมาณมากเกินไป กว่าที่โรงไฟฟ้าจะรับไว้ได้ก็ต้องทิ้งไป ส่วนใหญ่โรงไฟฟ้าแบบนี้จะอาศัยติดตั้งอยู่กับเขื่อนผันน้ำชลประทานซึ่งมีน้ำไหลผ่านตลอดปี จากการกำหนดกำลังผลิตติดตั้งมักจะคิดจากอัตราการไหลของน้ำประจำปีช่าวต่ำสุดเพื่อที่จะสามารถเดินเครื่องผลิตไฟฟ้าได้อย่างสม่ำเสมอตลอดทั้งปี ตัวอย่างของโรงไฟฟ้าชนิดนี้ได้แก่ โรงไฟฟ้าที่ กฟผ.กำลังศึกษาเพื่อก่อสร้างที่เขื่อนผันน้ำเจ้าพระยา จังหวัดชัยนาท และเขื่อนผันน้ำวชิราลงกรณ จังหวัดกาญจนบุรี

2. โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดเล็ก (Regulating Pond Hydro Plant)โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดเล็กที่สามารถบังคับการไหลของน้ำได้ในช่วงสั้นๆ เช่น ประจำวัน หรือประจำสัปดาห์ การผลิตไฟฟ้าจะสามารถควบคุมให้สอดคล้องกับความต้องการได้ดีกว่าโรงไฟฟ้าแบบ (Run-of-river) แต่อยู่ในช่วงเวลาที่จำกัดตามขนาดของอ่างเก็บน้ำ ตัวอย่างของโรงไฟฟ้าประเภทนี้ได้แก่ โรงไฟฟ้าเขื่อนท่าทุ่งนา จังหวัดกาญจนบุรี และโรงไฟฟ้าขนาดเล็กบ้านสันติจังหวัดยะลา

3. โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดใหญ่ (Reservoir Hydro Plant)โรงไฟฟ้าแบบนี้มีเขื่อนกั้นน้ำขนาดใหญ่และสูงกั้นขวางลำน้ำไว้ ทำให้เกิดเป็นทะเลสาบใหญ่ ซึ่งสามารถเก็บกักน้ำในฤดูฝนและนำไปใช้ในฤดูแล้งได้ โรงไฟฟ้าแบบนี้นับว่ามีประโยชน์มาก เพราะสามารถควบคุมการใช้น้ำในการผลิตกระแสไฟฟ้า เสริมในช่วงที่มีความต้องการใช้ไฟฟ้าสูงได้อย่างมีประสิทธิภาพสูงตลอดปี โรงไฟฟ้าพลังน้ำขนาดใหญ่ส่วนมากในประเทศไทยจัดอยู่ในโรงไฟฟ้าประเภทนี้

4. โรงไฟฟ้าแบบสูบน้ำกลับ ( Pumped Storage Hydro Plant)โรงไฟฟ้าแบบนี้มีเครื่องสูบน้ำที่สามารถสูบน้ำที่ปล่อยจากอ่างเก็บน้ำลงมาแล้ว นำกลับขึ้นไป เก็บไว้ในอ่างเก็บน้ำเพื่อใช้ผลิตกระแสไฟฟ้าได้อีก ประโยชน์ของโรงไฟฟ้าชนิดนี้เกิดจากการแปลงพลังงานที่เหลือใช้ในช่วงที่มีความต้องการใช้ไฟฟ้าต่ำ เช่นเวลาเที่ยงคืนนำไปสะสมไว้ในรูปของการเก็บน้ำในอ่างน้ำเพื่อที่จะสามารถใช้ผลิตกระแสไฟฟ้าได้อีกครั้งหนึ่งในช่วงที่มีความต้องการใช้ไฟฟ้าสูง เช่น เวลาหัวค่ำ ตัวอย่างของโรงไฟฟ้าแบบนี้ ได้แก่ โรงไฟฟ้าเขื่อนศรีนครินทร์ได้หน่วยที่ 4 ซึ่งสามารถสูบน้ำกลับขึ้น ไปเก็บไว้ในอ่างเก็บน้ำเขื่อนศรีนครินทร์ได้
ส่วนประกอบที่สำคัญ

เขื่อนเก็บกักน้ำ ทำหน้าที่เก็บกักน้ำในลำน้ำไว้เป็นอ่างเก็บน้ำให้มีปริมาณ และระดับน้ำสูงพอที่จะใช้ในการเดินเครื่องผลิตไฟฟ้า แบ่งออกเป็นประเภทใหญ่ 5 ประเภท คือ
1. เขื่อนหิน เขื่อนชนิดนี้ไม่จำเป็นต้องมีดินฐานรากที่แข็งแรงมาก วัสดุที่ใช้เป็นตัวเขื่อนประกอบด้วยหินถมที่หาได้จากบริเวณใกล้เคียงกับสถานที่ก่อสร้างเป็นส่วนใหญ่ มีผนังกันน้ำซึมอยู่ตรงกลางแกนเขื่อน หรือด้านหน้าหัวเขื่อนโดยวัสดุที่ใช้ทำผนังกันน้ำซึม อาจจะเป็นดินเหนียว คอนกรีตหรือวัสดุกันซึมอื่นๆ เช่น ยางแอสฟัลท์ก็ได้ ตัวอย่าง เขื่อนชนิดนี้ในประเทศไทย ได้แก่ เขื่อนศรีนครินทร์ เขื่อนวชิราลงกรณ์ และเขื่อนบางลาง เป็นต้น

2. เขื่อนดิน เขื่อนดินมีคุณสมบัติและลักษณะในการออกแบบคล้ายคลึงกับเขื่อนหิน แต่วัสดุที่ใช้ถมตัวเขื่อนมีดินเป็นส่วนใหญ่ ตัวอย่างเขื่อนชนิดนี้ในประเทศไทย ได้แก่ เขื่อนสิริกิติ์ เขื่อนแก่งกระจาน และเขื่อนแม่งัด เป็นต้น

3. เขื่อนคอนกรีตแบบกราวิตี้ เขื่อนชนิดนี้ใช้ก่อสร้างในที่ตั้งที่มีหินฐานรากเป็นหินที่ดีมีความแข็งแรง การออกแบบตัวเขื่อนเป็นคอนกรีตที่มีความหนาและน้ำหนักมากพอที่จะต้านทานแรงดันของน้ำ หรือแรงดันอื่นๆได้ โดยอาศัยน้ำหนักของตัวเขื่อนเอง รูปตัดของตัวเขื่อนมักจะเป็นรูปสามเหลี่ยมเป็นแนวตรงตลอดความยาวของตัวเขื่อน

4. เขื่อนคอนกรีตแบบโค้ง เขื่อนคอนกรีตแบบโค้ง มีคุณสมบัติที่จะต้านแรงดันของน้ำและแรงภายนอกอื่นๆ โดยความโค้งของตัวเขื่อน เขื่อนแบบนี้เหมาะที่จะสร้างในบริเวณหุบเขาที่มีลักษณะเป็นรูปตัว U และมีหินฐานรากที่แข็งแรง เมื่อเปรียบเทียบเขื่อนแบบนี้กับเขื่อนแบบกราวิตี้ เขื่อนแบบนี้มีรูปร่างแบบบางกว่ามากทำให้ราคาค่าก่อสร้างถูกกว่า แต่ข้อเสียของเขื่อนแบบนี้ คือการออกแบบและการดำเนินการก่อสร้างค่อนข้างยุ่งมาก มักจะต้องปรับปรุงฐานรากให้มีความแข็งแรงขึ้นด้วย เขื่อนภูมิพลซึ่งเป็น เขื่อนขนาดใหญ่แห่งแรกในประเทศไทย มีลักษณะผสมระหว่างแบบกราวิตี้และแบบโค้ง ซึ่งให้ทั้งความแข็งแรงและประหยัด

5. เขื่อนกลวงหรือเขื่อนครีบ เขื่อนกลวงมีโครงสร้างซึ่งรับแรงภายนอก เช่น แรงดันของน้ำ ที่กระทำต่อผนังกั้นน้ำที่เป็นแผ่นเรียบหรือครีบ (Buttress)ที่รับผนังกั้นน้ำและถ่ายแรงไปยังฐานราก เขื่อนประเภทนี้มักจะเป็นเขื่อนคอนกรีตเสริมเหล็ก ใช้วัสดุก่อสร้างน้อย โดยทั่วไป แล้วเป็นเขื่อนที่ประหยัดมาก แต่ความปลอดภัยของเขื่อนประเภทนี้มีน้อยกว่าเขื่อนกราวิตี้ เนื่องจากมีความแข็งแรงน้อยกว่า ด้วยเหตุนี้จึงไม่ค่อยมีผู้นิยมสร้างเขื่อนประเภทนี้มากนัก
เครื่องกังหันน้ำ (Hydro Turbine) ทำหน้าที่รับน้ำจากอ่างเก็บน้ำมาหมุนเครื่องกังหันน้ำซึ่งต่อเข้ากับเครื่องกำเนิดไฟฟ้ากังหันน้ำจำแนกออกเป็นประเภทใหญ่ ๆ ได้ 2 ประเภท คือ Reaction กับ Impulse

เครื่องกำเนิดไฟฟ้า(Generator) จำแนกตามความเร็วรอบและขนาดอย่างกว้างๆได้ดังต่อไปนี้ (ความถี่มาตรฐาน 50 ไซเกิลวินาที)

เครื่องความเร็วรอบสูง ขนาดเล็ก คือ ขนาด 200 – 2,000 เควี เอ.หมุน 1,000 – 750 รอบต่อนาที (หรืออาจต่ำกว่านี้)ส่วนมากเป็นชนิดเพลานอน (Horizontal Shaft) ต่อตรงกับกังหันน้ำประเภท Impulse บางทีก็เป็นชนิดเพลาตั้ง(Vertical Shaft) ต่อตรงหรือขับด้วยเกียร์จากกังหันรอบช้า ในบางโอกาสที่ใช้กับกังหันน้ำประเภท Reaction ด้วยก็มี

เครื่องความเร็วรอบสูง ขนาดใหญ่ คือขนาด 3,000 – 100,000 เควี เอ. หรือสูงกว่านี้หมุน 750 – 333 รอบต่อนาทีมีทั้งชนิดเพลานอนและเพลาตั้ง เหมาะกับกังหันน้ำประเภท Impulse หรือ Reaction

เครื่องความเร็วรอบต่ำ ขนาดเล็ก คือ ขนาด 200 – 2,00 เควี. หมุน 250 รอบต่อนาทีลงมา จนถึงขนาด 5,000 หรือ 10,000 เควี หมุน 125 รอบต่อนาทีลงมา ส่วนมากเป็นชนิดเพลาตั้ง เหมาะกับกังหันน้ำแบบ Francis และ Kaplan

เครื่องความเร็วรอบต่ำ ขนาดใหญ่ คือ ขนาด 5,000 – 250,000 เควีเอ. หมุนหรือสูงกว่านี้ หมุน 250 – 75 รอบต่อนาที เป็นเครื่องชนิดเพลาตั้ง เหมาะกับกังหันน้ำแบบ Francis และ Kaplan 2.6.3 ค่าลงทุนขั้นแรกและต้นทุนการผลิตไฟฟ้า

โรงไฟฟ้าพลังน้ำใหม่มีค่าลงทุนขั้นแรกประมาณ 20,000 – 56,375 บาทต่อกิโลวัตต์ คิดเป็นต้นทุนการผลิตประมาณ 1.20 – 2.20 บาทต่อหน่วย



แหล่งอ้างอิง tenny tenny.[online].เข้าถึงไดจาก : http://blog.eduzones.com/tenny/3617




วันศุกร์ที่ 28 สิงหาคม พ.ศ. 2552

เลนส์นูน



เลนส์นูน





เลนส์นูนรวมแสง


เลนส์นูน (convex lens) คือ เลนส์ที่โค้งออกด้านนอก มีขอบแคบ และตรงกลางกว้าง แสงที่ผ่านเลนส์นูนจะรวมเป็นจุดเดียว เรียกจุดนี้ว่า จุดโฟกัส เลนส์นูนสามารถสร้างภาพจริงหรือภาพเสมือนได้
เลนส์นูน สามารถแบ่งออกได้เป็น 3 ประเภทคือ
1.
เลนส์นูน 2 ด้าน
2.
เลนส์นูนแกมเว้า
3.
เลนส์นูนแกมระนาบ



ภาพที่เกิดจากเลนส์นูน

-วัตถุอยู่ไกลมาก แสงจากวัตถุขนานกับแกนมุขสำคัญ หักผ่านเลนส์นูนไปตัดกันได้ภาพจริงขนาดเล็กที่สุดที่จุดโฟกัส
-วัตถุอยู่ห่างจากเลนส์มากกว่า 2F (สองเท่าของจุดโฟกัส) ได้ภาพจริงหัวกลับ ขนาดเล็กกว่าวัตถุ
-วัตถุอยู่ห่างจากเลนส์เท่ากับ 2F ได้ภาพจริงหัวกลับขนาดเท่าวัตถุที่ระยะ 2F
-วัตถุอยู่ระหว่างจุด F กับจุด 2F จะได้ภาพจริงหัวกลับขนาดใหญ่กว่าวัตถุ
-วัตถุอยู่ที่จุดโฟกัส ได้ภาพขนาดใหญ่มากที่ระยะอนันต์
-วัตถุอยู่ระหว่าง F (จุดโฟกัส) กับเลนส์ เกิดภาพเสมือนหัวตั้งขนาดใหญ่กว่าวัตถุอยู่ข้างเดียวกับวัตถุ


สิ่งประดิษฐ์ที่ใช้เลนส์นูน




การหักเหของแสงผ่านเลนส์


เลนส์ คือ ตัวกลางโปร่งใสที่มีผิวหน้าเป็นผิวโค้ง ผิวโค้งของเลนส์อาจจะมีรูปร่างเป็นพื้นผิวโค้งทรงกลม ทรงกระบอก หรือ พาราโบลาก็ได้ เลนส์แบบง่ายสุดเป็นเลนส์บางที่มีผิวโค้งทรงกลม โดยส่วนหนาสุดของเลนส์จะมีค่าน้อยเมื่อเทียบกับรัศมีความโค้ง เลนส์แบ่งออกเป็น 2 ชนิด คือ เลนส์นูน (Convex lens ) กับเลนส์เว้า (Concave lens )

เลนส์นูน คือ เลนส์ที่มีตรงกลางหนากว่าตรงขอบเสมอ เมื่อผ่านลำแสงขนานเข้าหาเลนส์จะทำให้รังสีตีบเข้าหากัน และไปตัดกันจริงที่จุดโฟกัสจริง ( Real focus )

มีเลนส์นูนแบบต่าง ๆ ดังรูป



เลนส์นูนสองด้าน ( Double Convex Lens) ดังรูป a


เลนส์นูนแกมราบ ( Plano Convex Lens) ดังรูป b


เลนส์นูนแกมเว้า ( Concavo Convex Lens) ดังรูป c



ส่วนประกอบที่สำคัญของเลนส์


เลนส์นูน ดังรูป
อธิบาย
- แกนมุขสำคัญ ( Principle Axis ) ของเลนส์ ( C1 C2 ) คือเส้นตรงที่ลากผ่านจุดศูนย์กลางความโค้ง
- จุดโฟกัสของเลนส์นูน ( Principle Focus ,จุด F) คือ จุดที่รังสีขนานเดิมตีบไปตัดกัน


- Optical Center ของเลนส์ ( จุด O) คือ จุดที่อยู่บนแกนมุขสำคัญ ซึ่งรังสีเมื่อผ่านเข้าเลนส์และผ่านจุดนี้แล้ว แสงที่ผ่านออกมาจะมีแนวขนานกับรังสีเดิม

- จุดโฟกัสจริง เป็นจุดที่อยู่บนแกนมุขสำคัญของเลนส์นูน ลำแสงขนานเมื่อผ่านเลนส์นูนจะหักเหไปตัดกันจริงที่จุดโฟกัส ซึ่งอยู่ในด้านตรงข้ามกับวัตถุ

- จุดโฟกัสเสมือน เป็นจุดที่อยู่บนแกนมุขสำคัญของเลนส์เว้า ลำแสงขนานเมื่อผ่านเลนส์เว้าจะหักเหออกจากกัน โดยมีแนวรังสีเสมือนไปตัดกันที่จุดโฟกัสเสมือน ซึ่งอยู่ด้านเดียวกับวัตถุ

- ความยาวโฟกัส (f ) คือ ระยะจากจุดโฟกัสถึงจุด Optical Center ดังรูปด้านบน


วิธีเขียนทางเดินแสงเพื่อหาตำแหน่งภาพของวัตถุ ของเลนส์ทั้งสอง มีขั้นตอนดังนี้
- จากวัตถุลากรังสีขนานกับแกนมุขสำคัญ ตกกระทบกับเลนส์ แล้วหักเหผ่านจุดโฟกัส - จากวัตถุลากรังสีผ่านจุด Optical Center แล้วต่อรังสีให้ตัดกับรังสีในขั้นตอนแรกตำแหน่งที่รังสีตัดกัน คือ ตำแหน่งภาพ
- ถ้าวัตถุอยู่ที่ตำแหน่งที่ไกลมากหรือระยะอนันต์ จะได้ภาพจริงมีขนาดเป็นจุดอยู่ที่จุดโฟกัสดัง



ถ้าวัตถุอยู่ห่างมากกว่าจุดศูนย์กลางความโค้ง แต่ไม่ถึงระยะอนันต์ จะเกิดภาพจริงหัวกลับ ขนาดเล็กกว่าวัตถุ อยู่ระหว่างจุด F และ ซึ่งอยู่คนละด้านกับวัตถุ

- ถ้าวัตถุอยู่ที่จุด C จะเกิดภาพจริงหัวกลับที่ตำแหน่ง ขนาดเท่ากับวัตถุ และอยู่คนละด้านกลับวัตถุ
- ถ้าวัตถุอยู่ระหว่างจุด C และจุด F จะเกิดภาพจริงหัวกลับ ขนาดขยายอยู่นอกจุด ซึ่งอยู่คนละด้านกับวัตถุ
- ถ้าวัตถุอยู่ที่จุด F จะทำให้เกิดภาพที่ระยะอนันต์ เพราะรังสีแสงที่ออกมาจะเป็นรังสีแสงขนาน
- ถ้าวัตถุอยู่ระหว่างจุด F กับจุด O จะพบว่ารังสีรังสีที่ผ่านเลนส์มีการเบนออก และเมื่อเราต่อแนวรังสีที่หักเหผ่านเลนส์ จะพบว่าเกิดภาพเสมือนขนาดขยาย หัวตั้งอยู่ด้านเดียวกับวัตถุ






หมายเหตุ

- การให้ภาพของเลนส์นูน มีลักษณะเดียวกับการให้ภาพของกระจกเว้า คือ เลนส์ให้ทั้งภาพจริงและภาพเสมือน
- การเกิดภาพของเลนส์เว้า จะเหมือนกับการเกิดภาพของกระจกนูน คือ จะให้ภาพเสมือน หัวตั้ง และมีขนาดเล็กกว่าวัตถุเสมอ


- สำหรับเลนส์ การที่จะรู้ว่าปริมาณใดเป็นปริมาณจริงหรือเสมือนนั้น ดูได้จาก ตำแหน่งของปริมาณต่าง ๆ คือ ถ้าปริมาณนั้นมีตำแหน่งอยู่คนละด้านกับวัตถุ ก็ถือว่าเป็นปริมาณจริง แต่ถ้าปริมาณนั้นมีตำแหน่งอยู่ด้านเดียวกับวัตถุ ก็ให้ถือว่าเป็นปริมาณเสมือน

- ภาพจากเลนส์นูน จะมีทั้งภาพจริงและภาพเสมือน























วันศุกร์ที่ 14 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง

แสง


แสง คือการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นที่สายตามนุษย์มองเห็น หรือบางครั้งอาจรวมถึงการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นตั้งแต่รังสีอินฟราเรดถึงรังสีอัลตราไวโอเลตด้วย สมบัติพื้นฐานของแสง (และของการแผ่รังสีแม่เหล็กไฟฟ้าทุกช่วงคลื่น) ได้แก่
ความเข้ม (ความสว่างหรือแอมพลิจูด ซึ่งปรากฏแก่สายตามนุษย์ในรูปความสว่างของแสง) ความถี่ (หรือความยาวคลื่น ซึ่งปรากฏแก่สายตามนุษย์ในรูปสีของแสง) และ โพลาไรเซชัน (มุมการสั่นของคลื่น ซึ่งโดยปกติมนุษย์ไม่สามารถรับรู้ได้) แสงจะแสดงคุณสมบัติทั้งของคลื่นและของอนุภาคในเวลาเดียวกัน ทั้งนี้เนื่องจากทวิภาวะของคลื่นและอนุภาค ธรรมชาติที่แท้จริงของแสงเป็นปัญหาหลักปัญหาหนึ่งของฟิสิกส์สมัยใหม่
แสงมี
คุณสมบัติทวิภาวะ กล่าวคือ
1. แสงเป็นคลื่น : แสงเป็น
คลื่นแม่เหล็กไฟฟ้า โดยที่ระนาบการสั่นของสนามแม่เหล็กตั้งฉากกับระนาบการสั่นของสนามไฟฟ้า และตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น และแสงก็มีการเลี้ยวเบนด้วย ซึ่งการเลี้ยวเบนก็แสดงคุณสมบัติของคลื่น
2. แสงเป็นอนุภาค : แสงเป็นก้อน
พลังงานมีค่าพลังงาน E = hf โดยที่ h คือค่าคงตัวของพลังค์ และ f คือความถี่ของแสง เรียกอนุภาคแสงว่าโฟตอน


รังสีแม่เหล็กไฟฟ้าที่มองเห็นได้


แสงคือรังสีแม่เหล็กไฟฟ้าที่อยู่ในช่วง สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า ที่สามารถมองเห็นได้ คือ อยู่ในย่านความถี่ 380
THz (3.8×1014 เฮิรตซ์) ถึง 750 THz (7.5×1014 เฮิรตซ์) จากความสัมพันธ์ระหว่าง ความเร็ว (v) ความถี่ (f หรือ ν) และ ความยาวคลื่น (λ) ของแสง:



และ ความเร็วของแสงในสุญญากาศมีค่าคงที่ ดังนั้นเราจึงสามารถแยกแยะแสงโดยใช้ตามความยาวคลื่นได้ โดยแสงที่เรามองเห็นได้ข้างต้นนั้นจะมีความยาวคลื่นอยู่ในช่วง 400 นาโนเมตร (ย่อ 'nm') และ 800 nm (ในสุญญากาศ)
การมองเห็นของมนุษย์นั้นเกิดจากการที่แสง ไปกระตุ้น
เซลล์รูปแท่งในจอตา(rod cell) และ เซลล์รูปกรวยในจอตา (cone cell) ที่จอตา (retina) ให้ทำการสร้างคลื่นไฟฟ้าบนเส้นประสาท และส่งผ่านเส้นประสาทตาไปยังสมอง ทำให้เกิดการรับรู้มองเห็น


ความเร็วของแสง


นักฟิสิกส์หลายคนได้พยายามทำการวัดความเร็วของแสง การวัดแรกสุดที่มีความแม่นยำนั้นเป็นการวัดของ นักฟิสิกส์ชาวเดนมาร์ก Ole Rømer ในปี ค.ศ. 1676 เขาได้ทำการคำนวณจากการสังเกตการเคลื่อนที่ของดาวพฤหัสบดี และ ดวงจันทร์ไอโอ ของดาวพฤหัสบดี โดยใช้กล้องดูดาว เขาได้สังเกตความแตกต่างของช่วงการมองเห็นรอบของการโคจรของดวงจันทร์ไอโอ และได้คำนวณค่าความเร็วแสง 227,000 กิโลเมตร ต่อ วินาที (ประมาณ 141,050 ไมล์ ต่อ วินาที)
การวัดความเร็วของแสงบนโลกนั้นกระทำสำเร็จเป็นครั้งแรกโดย
Hippolyte Fizeau ในปี ค.ศ. 1849 เขาทำการทดลองโดยส่องลำของแสงไปยังกระจกเงาซึ่งอยู่ห่างออกไปหลายพันเมตรผ่านซี่ล้อ ในขณะที่ล้อนั้นหมุนด้วยความเร็วคงที่ ลำแสงพุ่งผ่านช่องระหว่างซี่ล้อออกไปกระทบกระจกเงา และพุ่งกลับมาผ่านซี่ล้ออีกซี่หนึ่ง จากระยะทางไปยังกระจกเงา จำนวนช่องของซี่ล้อ และความเร็วรอบของการหมุน เขาสามารถทำการคำนวณความเร็วของแสงได้ 313,000 กิโลเมตร ต่อ วินาที
Albert A. Michelson ได้ทำการพัฒนาการทดลองในปี ค.ศ. 1926 โดยใช้กระจกเงาหมุน ในการวัดช่วงเวลาที่แสงใช้ในการเดินทางไปกลับจาก ยอด Mt. Wilson ถึง Mt. San Antonio ในมลรัฐแคลิฟอร์เนีย ซึ่งการวัดนั้นได้ 186,285 ไมล์/วินาที (299,796 กิโลเมตร/วินาที) ค่าความเร็วแสงประมาณหรือค่าปัดเศษที่เราใช้กันในทุกวันนี้คือ 300,000 km/s and 186,000 miles/s.


การหักเหของแสง


แสงนั้นวิ่งผ่านตัวกลางด้วยความเร็วจำกัด ความเร็วของแสงในสุญญากาศ c จะมีค่า c = 299,792,458
เมตร ต่อ วินาที (186,282.397 ไมล์ ต่อ วินาที) โดยไม่ขึ้นกับว่าผู้สังเกตการณ์นั้นเคลื่อนที่หรือไม่ เมื่อแสงวิ่งผ่านตัวกลางโปร่งใสเช่น อากาศ น้ำ หรือ แก้ว ความเร็วแสงในตัวกลางจะลดลงซึ่งเป็นเหตุให้เกิดปรากฏการณ์การหักเหของแสง คุณลักษณะของการลดลงของความเร็วแสงในตัวกลางที่มีความหนาแน่นสูงนี้จะวัดด้วย ดรรชนีหักเหของแสง (refractive index) n โดยที่





คุณสมบัติของแสง


แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่ การเดินทางเป็นเส้นตรง (Rectilinear propagation) , การหักเห (Refraction) , การสะท้อน (Reflection) และการกระจาย (Dispersion)


การเดินทางแสงเป็นเส้นตรง ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n) ของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ






โดยที่ c คือ ความเร็วของแสงในสูญญากาศ และ v คือ ความเร็วของแสงในตัวกลางนั้นๆ














รูปที่ 1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสง


ตัวกลาง ค่าดัชนีการหักเห
อากาศ 1
เพชร 2.42
แก้ว 1.5 - 1.9
เส้นใยแสง 1.5
น้ำ 1.33
ค่าดัชนีการหักเหโดยปกติของตัวกลางต่างๆ


การสะท้อน


การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ

» การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาวดังรูป








การสะท้อนแบบปกติ

» การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระดังรูป















การสะท้อนแบบกระจาย


โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า "มุมสะท้อนเท่ากับมุมตกกระทบ"


การหักเห


การหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ) โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ

» n1 <>























» n1 > n2 แสงจะหักเหออกจากเส้นปกติ















» การสะท้อนกลับหมด (Total Internal Reflection) การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ













การกระจาย


ในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"


วันพฤหัสบดีที่ 6 สิงหาคม พ.ศ. 2552

ทัศนอุปกรณ์ ( กล้องจุลทรรศน์ )

กล้องจุลทรรศน์



กล้องจุลทรรศน์ใช้เลนส์ประกอบ สร้างโดยจอห์น คัฟฟ์ (John Cuff) ค.ศ. 1750
กล้องจุลทรรศน์ (อังกฤษ: Microscope) เป็นอุปกรณ์สำหรับมองดูวัตถุที่มีขนาดเล็กเกินกว่ามองเห็นด้วยตาเปล่า ศาสตร์ที่มุ่งสำรวจวัตถุขนาดเล็กโดยใช้เครื่องมือดังกล่าวนี้ เรียกว่า จุลทรรศนศาสตร์

นิรุกติศาสตร์
กล้องจุลทรรศน์เป็นคำศัพท์ที่แปลจากภาษาอังกฤษ "microscope" ซึ่งมีรากศัพท์มาจากภาษากรีก "ไมครอน" (micron) หมายถึง ขนาดเล็ก และ "สโคปอส" (scopos) หมายถึง เป้าหมาย หรือมุมมอง

ประวัติ
สิ่งมีชีวิตขนาดเล็กที่ไม่สามารถมองเห็นด้วยตาเปล่า เดิมใช้เพียงแว่นขยายและเลนส์อันเดียวส่องดู คงเช่นเดียวกับการใช้แว่นขยายส่องดูลายมือ ในระยะต่อมา กาลิเลอิ กาลิเลโอ ได้สร้างแว่นขยายส่องดูสิ่งมีชีวิตเล็กๆในราวปี
พ.ศ. 2153
ในช่วงปี พ.ศ. 2133 ช่างทำแว่นตาชาวฮอลันดาชื่อ แจนเสนประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบ ประกอบด้วยแว่นขยายสองอัน
ในปี พ.ศ. 2208 โรเบิร์ต ฮุก ได้ประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบที่มีลำกล้องรูปร่างสวยงาม ป้องกันการรบกวนจากแสงภายนอกได้ และไม่ต้องถือเลนส์ให้ซ้อนกัน (ดูภาพในกล่องข้อความประกอบ) เขาส่องดูไม้คอร์กฝานบางๆ แล้วพบช่องเล็กๆมากมาย เขาเรียกช่องเหล่านั้นว่าเซลล์ ซึ่งหมายถึงห้องว่างๆ หรือห้องขัง เซลล์ที่ฮุกเห็นเป็นเซลล์ที่ตายแล้ว เหลือแต่ผนังเซลล์ของพืชซึ่งแข็งแรงกว่าเยื่อหุ้มเซลล์ในสัตว์ จึงทำให้คงรูปร่างอยู่ได้ ฮุกจึงได้ชื่อว่าเป็นผู้ตั้งชื่อเซลล์
ในปี พ.ศ. 2215 แอนโทนี แวน ลิวเวนฮุค ชาวฮอลันดา สร้างกล้องจุลทรรศน์ชนิดเลนส์เดียวจากแว่นขยายที่เขาฝนเอง แว่นขยายบางอันขยายได้ถึง 270 เท่า เขาใช้กล้องจุลทรรศน์ตรวจดูหยดน้ำจากบึงและแม่น้ำ และจากน้ำฝนที่รองไว้ในหม้อ เห็นสิ่งมีชีวิตเล็กๆมากมายนอกจากนั้นเขายังส่องดูสิ่งมีชีวิตต่างๆ เช่น [(([เม็ดเลือดแดง]))], เซลล์สืบพันธุ์สัตว์ตัวผู้, กล้ามเนื้อ เป็นต้น เมื่อเขาพบสิ่งเหล่านี้ เขารายงานไปยังราชสมาคมแห่งกรุงลอนดอน จึงได้รับการยกย่องว่าเป็นผู้ประดิษฐ์กล้องจุลทรรศน์
ปี พ.ศ. 2367 ดูโธรเชต์ นักพฤกษศาสตร์ชาวฝรั่งเศสศึกษาเนื้อเยื่อพืช และสัตว์พบว่าประกอบด้วยเซลล์
ปี พ.ศ. 2376 โรเบิร์ต บราวน์ นักพฤกษศาสตร์ชาวอังกฤษ เป็นค้นแรกที่พบว่าเซลล์มีพืชมีนิวเคลียสเป็นก้อนกลมๆ อยู่ภายในเซลล์
ปี พ.ศ. 2378 เฟ-ลิกซ์ ดือจาร์แดง นักสัตวศาสตร์ชาวฝรั่งเศส ศึกษาจุลินทรีย์และสิ่งมีชีวิตอื่นๆ พบว่าภายในประกอบด้วยของเหลวใสๆ จึงเรียกว่า ซาร์โคด ซึ่งเป็นภาษาฝรั่งเศสมาจากศัพท์กรีกว่า ซารค์ (((Sarx))) ซึ่งแปลว่าเนื้อ
ปี พ.ศ. 2381 ชไลเดน นักพฤกษศาสตร์ชาวเยอรมัน ศึกษาเนื้อเยื่อพืชชนิดต่างๆ พบว่าพืชทุกชนิดประกอบด้วยเซลล์
ปี พ.ศ. 2382 ชไลเดรและชวาน จึงร่วมกันตั้งทฤษฎีเซลล์ ซึ่งมีใจความสรุปได้ว่า "สิ่งมีชีวิตทุกชนิดประกอบไปด้วยเซลล์และผลิตภัณฑ์จากเซลล์"
พ.ศ. 2382 พัวกินเย นักสัตวิทยาชาวเชคโกสโลวาเกีย ศึกษาไข่และตัวอ่อนของสัตว์ชนิดต่างๆ ะบว่าภายในมีของเหลวใส เหนียว อ่อนนุ่มเป็นวุ้น เรียกว่าโปรโตพลาสซึม
ต่อจากนั้นมีนักวิทยาศาสตร์อีกมากมายทำการศึกษาเกี่ยวกับเซลล์ด้วยกล้องจุลทรรศน์ชนิดเลนส์ประกอบ และได้พัฒนาให้ดียิ่งขึ้น จนกระทั่งปี พ.ศ. 2475 นักวิทยาศาสตร์ชาวเยอรมัน คืออี.รุสกา และแมกซ์นอลล์ ได้เปลี่ยนแปลงกระบวนการของกล้องจุลทรรศน์ที่ใช้แสงและเลนส์มาใช้ลำอิเล็กตรอน ทำให้เกิดกล้องจุลทรรศน์อิเล็กตรอนขึ้นในระยะต่อๆมา ปัจจุบันมีกำลังขยายกว่า 5 แสนเท่า

ชนิดของกล้องจุลทรรศน์
กล้องจุลทรรศน์สามารถแบ่งออกเป็นประเภทใหญ่ๆได้ 2 ประเภท คือ กล้องจุลทรรศน์แบบแสง (Optical microscopes) และกล้องจุลทรรศน์อิเล็กตรอน((((Electron microscopes))))
กล้องจุลทรรศน์ชนิดที่พบได้มากที่สุด คือชนิดที่ประดิษฐ์ขึ้นเป็นครั้งแรก เรียกว่า กล้องจุลทรรศน์แบบใช้แสง (optical microscope) เป็นอุปกรณ์ใช้แสงอย่างหนึ่ง มีเลนส์อย่างน้อย 1 ชิ้น เพื่อทำการขยายภาพวัตถุที่วางในระนาบโฟกัสของเลนส์นั้นๆ

กล้องจุลทรรศน์แบบใช้แสง
1.Light microscope เป็นกล้องจุลทรรศน์ที่พบอยู่ทั่วไป โดยเวลาส่องดูจะเห็นพื้นหลังเป็นสีขาว และจะเห็นเชื้อจุลินทรีย์มีสีเข้มกว่า
2.Dark field microscoe เป็นกล้องจุลทรรศน์ที่มีพื้นหลังเป็นสีดำ เห็นเชื้อจุลินทรีย์สว่าง เหมาะสำหรับใช้ส่องจุลินทรีย์ที่มีขนาดเล็ก ที่ติดสียาก
3.Phase contrast microscope ใช้สำหรับส่องเชื้อจุลินทรีย์ที่ยังไม่ได้ทำการย้อมสี จะเห็นชัดเจนกว่า Light microscope
4.Fluorescence microscope ใช้แหล่งกำเนิดแสงเป็น อัลตราไวโอเลต ส่องดูจุลินทรีย์ที่ย้อมด้วยสารเรืองแสง ซึ่งเมื่อกระทบกับแสง UV จะเปลี่ยนเป็นแสงช่วงที่มองเห็นได้ แล้วแต่ชนิดของสารที่ใช้ พื้นหลังมักมีสีดำ

กล้องจุลทรรศน์อิเล็กตรอน
ดูบทความเพิ่มเติมที่ กล้องจุลทรรศน์อิเล็กตรอน
กล้องจุลทรรศน์อิเล็กตรอน (Electron microscope) เป็นกล้องจุลทรรศน์ที่มีกำลังการขยายสูงมาก เพราะใช้ลำแสงอิเล็กตรอนแทนแสงปกติและใช้สนามแม่เหล็กไฟฟ้าแทนเลนส์แก้ว เป็นกล้องที่ใช้ในการศึกษาโครงสร้าง และส่วนประกอบของเซลล์ ได้อย่างละเอียด ที่กล้องชนิดอื่นไม่สามารถทำได้

ส่วนประกอบของกล้องจุลทรรศน์
1.ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ ทำหน้าที่รับน้ำหนักทั้งหมดของกล้องจุลทรรศน์ มีรูปร่างสี่เหลี่ยม หรือวงกลม ที่ฐานจะมีปุ่มสำหรับปิดเปิดไฟฟ้า
2.แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน ใช้เป็นที่จับเวลาเคลื่อนย้ายกล้องจุลทรรศน์
3.ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่าง ๆ ติดอยู่กับจานหมุนที่เรียกว่า Revolving Nosepiece
4.ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน
5.ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น
6.เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ
7.เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ
8.เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา
9.กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุโดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า
10.ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ
11.แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา
12.ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกยิ่งขึ้น
13.แท่นวางวัตถุ (Stage) เป็นแท่นสำหรับวางสไลด์ตัวอย่างที่ต้องการศึกษา มีลักษณะเป็นแท่นสี่เหลี่ยม หรือวงกลมตรงกลางมีรูให้แสงจากหลอดไฟส่องผ่านวัตถุแท่นนี้สามารถเลื่อนขึ้นลงได้ด้านในของแท่นวางวัตถุจะมีคริปสำหรับยึดสไลด์และมีอุปกรณ์ช่วยในการเลื่อนสไลด์ เรียกว่า Mechanical Stage นอกจากนี้ยังมีสเกลบอกตำแหน่งของสไลด์บนแทนวางวัตถุ ทำให้สามารถบอกตำแหน่งของภาพบนสไลด์ได้